查询
1 词典释义:
perceptron
时间: 2025-11-20 01:04:33
英 [pəˈseptrɒn]
美 [pərˌseptrɑn]

n. 感知器;感知机;感知器模型;感知器算法;感知器网络

双语例句
  • Perceptron as Feature Detector. Visual Receptive Fields.

    做为特征探测器的感应机。视觉的接受域。

  • The perceptron can only solve linearly separable problems.

    感知机只能解决线性可分问题。

  • There are important differences from the perceptron algorithm.

    这里有一些与感知器算法相区别的重要不同点。

  • The network for retrieving wind speed is a multi-layer perceptron.

    风速的反演是基于多层感知器网络;

  • A perceptron utilizes weights in a different and perhaps more intuitive way.

    感知器以一种不同的而且可能更为直观的方式来使用权重。

  • Obviously, the perceptron isn't a complete model of human decision-making!

    显然,感知器不是一个人类决策的完整模型!

  • Multilayer perceptron networks have been widely used in many applications.

    多层前传神经网络在许多领域有着广泛的应用。

  • A method of constructing knowledge based fuzzy perceptron based on rough sets theory is proposed.

    提出了用粗糙集理论构造模糊多层感知器的方法。

  • A neural net that USES this rule is known as a perceptron, and this rule is called the perceptron learning rule.

    一个使用这个规则的神经网络称为感知器,并且这个规则被称为感知器学习规则。

  • After some research I have chosen a multilayer perceptron and standard back-propagation algorithm for training.

    经过我选择了多层感知和标准的反向传播训练算法的研究。

  • The multi-layer perceptron is introduced to charcacterize the microstrip discontinuity by describings-parameters.

    本文采用多层感知器建立了微带不连续性的神经网络模型。

  • The quintessential example of a deep learning model is the feedforward deepnetwork or multilayer perceptron (MLP).

    深度学习模型的一个典型例子是前馈深度网络,或者说多层感知器(MLP)。

  • Because liner models have some defects, I construct perceptron model and BP model on base of neural networks theory.

    考虑到线性模型的一些缺点,本文随后应用神经网络理论,分别建立感知器预警模型和BP网络预警模型。

  • Numerical experiments show that the NNKBN model has many advantages over the conventional multi-layer perceptron model.

    数值实验表明NNKBN模型在许多方面优于传统的多层感知器模型。

  • But what the example illustrates is how a perceptron can weigh up different kinds of evidence in order to make decisions.

    不过这个例子说明的是感知器如何权衡不同种类因素来做出决策的。 并且一个由感知器组成的复杂网络似乎真的可以做出精准的决定。

  • Perceptron is a kind of useful neural network model and can classify the classification of the detachable linearity correctly.

    感知器是一种有用的神经网络模型,可以对线性可分的模式进行正确分类。

  • The continually optimized connecting relation is gained via perceptron and XOR function, then the optimal path graph is found.

    利用感知器异或函数获得了节点之间不断优化的连接关系,然后得到最优路径图。

  • For modeling of medical ward based on data fusion and data mining, multi - layer perceptron network and decision trees are used.

    在结合数据融合和数据挖掘的医疗监护模型的建模方面,采用多层感知器网络和决策树方法建立报警决策器的模型。

  • The sensitivity analysis approach for the hardware implementation of multilayer perceptron prior to network training is proposed.

    提出了训练前多层感知器硬件设计的灵敏度分析方法。

  • The Problem of Credit Assignment. Perceptron Learning Rule. Convergence Theorem. Learning by Gradient Following. Online learning.

    原因探究、感应机学习规则、收敛定理。梯度跟随学习法、线上学习。

  • This paper introduces a fuzzy classification model based on the proposed fuzzy kernel hyperball perceptron(FKHP) learning method.

    本文提出一种模糊核超球感知器(FKHP)学习方法,并介绍了一种基于FKHP这种学习方法的模糊分类模型。

  • The separating system consists of a multilayer perceptron (nonlinear part) followed by a linear blind deconvolution (linear part).

    分离系统由多层感知器(非线性部分)后接一个线性盲解卷过程(线性部分)组成。

  • A method of implementing symbol logic inference system using recurrent multilayer perceptron neural networks is presented in this paper.

    介绍一种用循环多层感知器神经网络实现符号逻辑推理系统的方法。

  • Of great interest, popular multilayer perceptron (MLP), radial basis function (RBF) and polynomial neural networks are the focus of the paper.

    其中,对于多层感知器网络、径向基函数网络、多项式网络尤其关注。

  • In this paper, the authors study the detection of signals in non-Gaussian noise, and employ a multilayer perceptron neural network as a detector.

    本文研究了非高斯噪声中信号的检测,采用多层感知器神经网络作为检测器。

  • The extracted initial rules and their accuracy and coverage are used to configure the fuzzy perceptron structure and initial weights for training.

    网络的结构由已经抽取的规则映射而成,初始连接权由规则的精确度和覆盖度确定。

  • It is applicable to any small vocabulary hybrid speech recognition system that combines hidden Markov model (HMM) with multi-layer perceptron (MLP).

    研究适用于隐马尔可夫模型(HMM)结合多层感知器(mlp)的小词汇量混合语音识别系统的一种简化神经网络结构。

  • For a neuro_fuzzy classifier based on the fuzzy perceptron, this paper analyses how membership function constraints affect the classification result.

    针对一类基于模糊感知器的神经模糊分类器,分析了隶属函数限制条件对分类结果的影响。

  • The perceptron training rule is based on the idea that weight modification is best determined by some fraction of the difference between target and output.

    感知器培训规则是基于这样一种思路—权系数的调整是由目标和输出的差分方程表达式决定。