查询
1 词典释义:
leibniz
时间: 2025-07-06 23:10:48
英 [ˈlaɪbnɪts , ˈliːbnɪts]
美 [ˈlaɪbnɪts]

n. 莱布尼兹(人名)

双语例句
  • Leibniz developed closely analogous concepts and techniques.

    莱布尼茨发展了类似的概念和技术。

  • Researchers have, however, recently discovered notes of Leibniz' that discuss one of Newton's books on mathematics.

    然而,研究人员最近发现莱布尼茨的笔记中讨论了牛顿的一本数学著作。

  • Leibniz' notes are limited to early sections of Newton's book, sections that precede the ones in which Newton's calculus concepts and techniques are presented.

    莱布尼茨的笔记仅限于牛顿的书的早期章节,这些章节先于牛顿微积分概念和技巧的介绍。

  • Rationalists are Descartes, Leibniz and Spinoza.

    理性主义者有笛卡尔,莱布尼兹和斯宾诺莎。

  • Isaac Newton had a bitter feud with Leibniz.

    牛顿就曾与莱布尼兹成为冤家。

  • In 1686, Leibniz published the first calculus literature.

    1686年,莱布尼茨发表了第一篇积分学的文献。

  • Moreover, the condition of Newton leibniz may be improved.

    同时,牛顿-莱布尼兹定理的条件可以改进。

  • This very slowly converging series was known to Leibniz in 1674.

    这个收敛很慢的级数是莱布尼茨在1674年得到的。

  • In this paper various forms for the Leibniz formula have been given.

    将求两个函数的乘积的高阶导数的莱布尼兹公式作了多种形式的推广。

  • According to Leibniz, the ultimate and indivisible units of all existence.

    根据莱布尼茨,最终的和不可分割的单位都存在。

  • Leibniz and Newton are usually both credited with the invention of calculus.

    莱布尼茨和牛顿通常都记一起发明了微积分。

  • Now we use the calculus is the universal symbol Leibniz was carefully chosen.

    现在我们使用的微积分通用符号就是当时莱布尼茨精心选用的。

  • The basic formula of the algorithm of definite integral is Newton-Leibniz formula.

    计算定积分的基本公式是牛顿一菜布尼兹公式。

  • Leibniz was an inventor of the calculus and a forefather of modern mathematical logic.

    莱布尼茨是一个发明家的演算以及祖先的现代数理逻辑。

  • In the opinion of Leibniz, departing from ideas, things can be differentiated apriori.

    莱布尼茨认为,从观念本身出发就能对事物进行先验区分。

  • Conditions of Newton-leibniz formula are studied, and corresponding examples are given.

    对牛顿—莱布尼茨公式的条件进行研究,并且给出相关例子。

  • Calculus, developed by Newton and Leibniz, is based on derivatives and integrals of curves.

    演算,由牛顿和莱布尼茨的,是基于对衍生工具和积分的曲线。

  • Leibniz discovered that any number of symbols could be formed from patterns of these two marks.

    莱布尼茨发现,任何数目的符号都可以由这两种记号的图案所组成。

  • Descartes, Leibniz, Montesquieu, Voltaire, Goethe and Kant all studied the traditional Chinese culture.

    笛卡尔、莱伯尼兹、孟德斯鸠、伏尔泰、歌德、康德等,都对中国传统文化有过研究。

  • Saxong has nurtured many well-known people. Great scientist Leibniz, composer Bach, and writer Lessing lived here.

    萨克森州名人辈出,伟大的科学家莱布尼茨、音乐家巴赫和文学家莱辛都曾在这里生活过。

  • The land of Leibniz and Humboldt, of Goethe and Gauss, is now indulging the fantasies of cynical scaremongers.

    这片诞生过莱布尼茨和洪堡、歌德和高斯的土地,现在正沉浸于危言耸听者愤世嫉俗的幻想中。

  • The Dukes of Hanover thought they knew what Leibniz should be doing with his time: working on their family history.

    汉诺威的公爵们认为他们知道莱布尼茨最应当做什么:编写他们的家族史。

  • Newton was the first to apply calculus to general physics and Leibniz developed much of the notation used in calculus today.

    牛顿是第一个适用于一般的物理演算和莱布尼茨大部分发达国家中使用的符号演算今天。

  • Newton's study focused on the calculus from the kinematic considerations, Leibniz is focused on the geometry to be considered.

    牛顿研究微积分着重于从运动学来考虑,莱布尼茨却是侧重于几何学来考虑的。

  • I will argue that both Descartes and Leibniz offered a negative reply to the first question, while Hobbes offered a positive one.

    本文将论证,笛卡尔和莱布尼茨对上述第一个问题都给出了否定的回答,而霍布斯则给出了肯定的回答。

  • In mathematics, Newton established "the Newton binomial theorem", and nearly simultaneously established the calculus study with Leibniz.

    在数学上,牛顿创立了“牛顿二项式定理”,并和莱布尼兹几乎同时创立了微积分学。

  • In mathematics, Newton established "the Newton binomial theorem", and nearly simultaneously established the calculus study with Leibniz.

    在数学上,牛顿创建了“牛顿二项式定理”,并和莱布尼兹简直同时创建了微积分学。

  • G. W. Leibniz Those few things having been considered, the whole matter is reduced to pure geometry, which is the one aim of physics and mechanics.

    考虑了很少的那几样东西之后,整个的事情就归结为纯几何,这是物理和力学的一个目标。

  • G. W. Leibniz I believe that we lack another analysis properly goemetric or linear which expresses location directly as algebra expresses magnitude.

    我相信我们缺少另一门分析的学问,它是真正几何的和线性的,它能直接地表示位置,如同代数表示量一样。