查询
1 词典释义:
cuda
时间: 2025-08-30 12:37:06
英 [ˈkuːdə]
美 [ˈkuːdə]

abbr. 显卡厂商NVIDIA推出的运算平台(Compute Unified Device Architecture的缩写)

n. 【人名】库达…;楚达…

双语例句
  • How do the warps schedule on CUDA SMs?

    如何在CUDA短信经纱的时间表吗?

  • How to properly apply thread synchronization in CUDA app?

    如何正确应用在CUDA应用程序线程同步吗?

  • Is this a CUDA thread synchronization issue or something else?

    这是CUDA线程同步问题还是其他什么?

  • Appendix B lists the mathematical functions supported in CUDA.

    附录b列举cuda中支持的数学函数。

  • Are general reads and writes to global memory atomic in CUDA if.

    一般读和写在CUDA如果全局内存原子。

  • How to query the current performance state of your GPU with CUDA?

    如何查询你的GPU使用CUDA的当前性能状态?

  • Is there a performance penalty for CUDA method not running in sync?

    有一种方法不同步运行CUDA的性能?

  • Cumulative sum in two dimensions on array in nested loop — CUDA implementation?

    在数组的嵌套循环——CUDA实现二维累积?

  • How to calculate time loss for the data transmission from host to device in CUDA?

    如何计算数据传输从主机到设备在CUDA的损失?

  • You likely created a new CPP file using "CUDA C Bitreverse Application" template.

    你可能会创建一个新的CPP文件使用CUDA C倒位应用模板。

  • In this paper, we implement an efficient matrix multiplication on GPU using NVIDIA's CUDA.

    本文使用NVIDIA的CUDA在GPU上实现了一个高效的矩阵乘法。

  • Using CUDA C language, using CUDA texture memory, image stretching parallel implementation.

    说明:使用CUDA C语言,利用CUDA纹理内存,实现图像拉伸的并行实现。

  • We do take every opportunity to discuss the ability to run CUDA with anyone who's interested.

    但我们的确在抓紧每个机会与那些对CUDA感兴趣的人讨论运行CUDA的能力问题。

  • This document is divided into the following chapters: chapter 1 is an introduction to CUDA and GPU.

    本文档分为以下几个章节:第1章是CUDA和GPU的简介。

  • That being said, as of CUDA 4.0 by default there is one context created per process and not per thread.

    也就是说,默认4.0 CUDA技术的每个过程,而不是有一个上下文创建每个线程。

  • Achieve a highly paralleled algorithm to calculate the simplification error of triangular meshes by using CUDA.

    利用CUDA实现了高度并行化的网格模型简化误差计算算法。

  • Can I somehow run X11 on the Intel integrated graphics in my optimus laptop and debug CUDA code on the NVIDIA GPU?

    我能以某种方式运行X11在英特尔集成显卡的笔记本电脑在我的擎天柱和NVIDIA GPU的CUDA代码调试?

  • The result showed that CUDA could speed up calculation and be well used in real-time target tracking on upper computer.

    结果表明,CUDA的应用使上位机目标跟踪的实时性得到了很大提升,可以将其应用于其它众多领域。

  • Multiple NPN240s can be linked to single or multiple hosts to create multi-node CUDA GPU clusters capable of thousands of GFLOPS.

    多个NPN240处理器可以链接到一个或多个主机,建立多节点CUDA GPU集群,峰值可达数千gflops。

  • After experiments, comparing CPU 's computing power can be found, CUDA' s ability to process data in parallel is very strong.

    在经过实验之后,对比CPU的计算能力可以发现,CUDA在并行处理数据的能力非常强大。

  • What counts more when CUDA kernel speed execution is of vital importance? The frequency of the cores or the number of the SMs?

    更重要的在CUDA内核执行速度是至关重要的?核心的频率或短信的数量吗?

  • Abstract CUDA is a parallel computing architecture introduced by NVIDIA, it mainly used for large scale data-intensive computing.

    摘要CUDA是一种由NVIDIA推出的并行计算架构,非常适合大规模数据密集型计算。

  • The CUDA driver and Toolkit installation are required before running the precompiled examples or compiling the example source code.

    必需安装CUDA驱动和CUDA工具包,此后才可运行预编译的例程或编译样例源代码。

  • Each CUDA context has it's own virtual memory space, therefore you can not use a pointer from one context inside an another context.

    每个CUDA上下文都有它自己的虚拟内存空间,因此你不能使用一个指针从一个上下文在另一个上下文。

  • CUDA just take full advantage of parallel capability of GPU, which is a kind of scalable parallel computing model launched by the NVIDIA.

    CUDA正是为了充分利用GPU的并行功能,由NVIDIA公司推出的可伸缩并行计算模型。

  • The CUDA application completely runs on the target machine, so the console or UI for the application will be seen on the target machine only.

    CUDA应用程序完全运行在目标机器上,所以控制台或用户界面的应用程序将被视为对目标机。

  • Please note that the CUDA Debugger for Linux has been tested only on 32-bit Red hat Enterprise Linux (RHEL) 5.x but may work on other distros as well.

    注意:Linux平台下的CUDA调试程序仅在32位的Linux红帽企业版5 . x (RHEL)上测试通过,可能也支持Linux其他已发行版本。

  • CUDA gives full play to the advantages of GPU Streaming Multiprocessors Array and greatly improves the efficiency of the parallel computation programs.

    倍。CUDA使GPU流处理器阵列的性能得到充分发挥,极大地提高了并行计算程序的效率。

  • The core part of ray tracing computation will be modified to adapt the advantages and limitations of CUDA so as to amplify the power of parallelization.

    光线追踪的核心计算部分则根据CUDA优势与限制进行适应性改造,发挥尽可能大的并行能力。

  • Any GPU device has a device driver, so targeting it makes more sense than generating CUDA or OpenCL code which would require from users to install other SDKs.

    所有GPU设备都有设备驱动,因此针对它来编程更合理,这样会比生成CUDA或者OpenGL的代码更好,因为那还需要用户安装其它的SDK。